## **Developing Efficient Uncertainty Visualization** Algorithms in VTK-m

Nrushad Joshi<sup>1</sup>, Zhe Wang<sup>2</sup>, David Pugmire<sup>2</sup>, Kenneth Moreland<sup>2</sup>, Chris R. Johnson<sup>3</sup>, and Tushar M. Athawale<sup>2</sup> <sup>1</sup>Indiana University Bloomington, <sup>2</sup>Oak Ridge National Laboratory, <sup>3</sup>SCI Institute, University of Utah

## Motivation

- uncertainty, which can lead to inaccurate analysis

## Goal

- Isosurface value
- Fiber surface bivariate data





## VTK-m

- Visualization toolkit for many multi-core processors
- Department of Energy

# • Features









| Serial |
|--------|
| OpenMP |
| CUDA   |

Achieved significant speed up for uncertainty computation using

- Fiber surface: **974X** faster on Supernovall dataset

Thanks to the Oak Ridge Leadership Computing Facility [Summit

[1] Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm [2] Athawale, T. M., Sane, S., & Johnson, C. R. (2021). Uncertainty Visualization of the Marching Squares and Marching Cubes [3] Wang, Z., Athawale, T. M., Moreland, K., Chen, J., Johnson, C. R., & Pugmire, D. (2023). FunMC<sup>2</sup>: A Filter for Uncertainty

1.06E+06 (ms) 27849 (ms) 1084 (ms)

