
Interactive Visualization of Binary Code for 
Compiler Optimizations
Shadmaan Hye and Katherine E. Isaacs

Novel Layout of Loops in DisassemblyProblem Statement
Program analysts spend huge amount of time navigating large binary 
codes to improve compiler performance. Assembly code is difficult to 
understand for lack of intuitive correlation with the source code, 
hampering compiler optimization.

Solution: DisViz aids understanding through interactive visual analysis 
of source and assembly code relationships.

Providing Structure to Disassembly Code

Source Code

Assembly Code
Assembly Code with Basic blocks

Basic Block Structure

We aim to support large binaries. The example above has more than 
260,000 assembly instructions, 1,000 source files & 3,000 loops. 

We visualize assembly code structured in basic blocks: 

Designed the loop blocks according to this loop design:

Design phase of pseudo blocks solving corner cases.

After pseudo blocks, it was observed that another 
order was necessary to understand control flow. 
The example above shows the 2 orders:
Memory Address: The original order in which the 
block appears in the memory layout.
Loop Structure: The designed order with loop nesting.

Designing Orders of Disassembly View


