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Motivation - Cocktail-Party Problem

* Simple scenario:
— Two people speaking simultaneously in a room.

— Speeches are recorded by two microphones in separate locations.
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Motivation - Cocktail-Party Problem

f \m,ﬁ

* Recorded time signals, by the two microphones, are  \_ 8(t) )\ 8,(t)
denoted by x,(t), x,(t).

* Let s4(t), s,(t) be the speech signals emitted by the
two speakers.

* 'The recorded time signals can be expressed as a ay
a

linear equation:
X (5) = ay481(0) + a558,(0) i g\ 2

%() = ay81(6) + as,(0) U E
where parameters 1n matrix A depend on distances

of the microphones to the speaker, along with l
other microphone properties
p prop %,(t)

* Assume s,(t) and s,(t) are statistically independent.
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Motivation - Cocktail-Party Problem

Goal:

— Recover the unmixed speech signals, best
estimate u,(t), without knowing A or s;(t).

I
n S

L X(0)



http://www.cis.hut.fi/projects/ica/cocktail/001000010est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav

Motivation - Cocktail-Party Problem
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The original signals were very accurately estimated, up to multiplicative signs




ICA versus PCA
* Similarity
— Feature extraction

— Dimension reduction
e Difference

— PCA uses up to second order moments ot the data to
produce uncorrelated components.

— ICA strives to generate components as independent
as possible through minimizing both the second-
order and higher-order dependencies in the given
data.



ICA versus PCA




Definition of ICA

* Assume that we have 7 mixtures Xy, ..., X, of 7 independent
components:
X; = a8+ aps, ...t ags,  forall]

The time index t has dropped in ICA model, since we assume that each mixture and
individual components are random variables instead of a proper time signal. Thus the
observed values x(t), e.g. the microphone signals in the cocktail party problem, are
then a sample/realization of this random variable.

* Without loss of generality, we can assume that both the mixture
variables and the independent components have zero mean.

If this is not true, then the observable vatiables x; can always be centered by

subtracting the sample mean, which makes the model zero-mean.



Definition of ICA

* The equation can be expressed using vector-matrix notation,

X = As

where Xy S1 a, . .

XxX=| |, s=| and A=

Xn Sn anl - ann

x : random vector whose elements are the mixtures X;y...,X,

s : random vector whose elements are the sources syy...,8,

A : mixing matrix with elements a;

* Expression in columns of matrix A, X = Z a; S;



Definition of ICA

* This statistical model 1s called zndependent component
analysis, or ICA model.

* ICA model is a generative model, since 1t describes how
the recorded data are generated by mixing the
individual components.



ICA — Assumptions

The starting point for ICA is the very simple assumption that the
components s, are statistically independent — explained later.

It will be shown that we must also assume that the independent component
must have nongaussian distributions. However, in the basic model we do not
assume these distributions known (if they are known, the problem 1s
considerably simplified.)

For simplicity, we are also assuming that the unknown mixing matrix is
square, but this assumption can be sometimes relaxed.

Then, after estimating the matrix A, we can compute its inverse, say W, and
obtain the independent component simply by:

s = A'lx = Wx



BSS - Blind Source Separation

ICA 1s very closely related to the method called bind source separation (BSS) or
blind signal separation.

A “source” means here an original signal; 1.e. independent component, like
the speaker in a cocktail party problem.

“Blind” means that we know very little, if anything, on the mixing matrix A,
and make little assumptions on the source signals.

ICA 1s one method, perhaps the most widely used, for performing blind
source separation.



BSS - Blind source separation
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Ambiguities of 1CA

'Two major ambiguities:

1. The wvartances (energies) of the independent
components s; cannot be determined.

Since both s and A are unknown, any scalar multiplier of source s, can
be cancelled by dividing the corresponding column a; of A with the
same scalar value.

As a consequence, we may quite as well fix the magnitudes of the

independent components; as they are random variables, the most
natural way to do this is to assume that each has unit variance: E{s?}=
1.

Note that this still leaves the ambiguity of the sign: we could multiply
the an independent component by —1 without affecting the model.
This ambiguity 1s, fortunately, insignificant in most applications.




Ambiguities of 1CA

'Two major ambiguities:

2. 'The order of the independent components cannot
be determined.

" Again, since s and A are unknown, order of the terms in the model can
be changed freely, and we can call any of the independent components
the first one.



Statistical Illustration of ICA

Consider two independent components have the following
uniform distributions,

r

1 .
—— If|s. | < \@
p(Si):< 2\@ ! ‘ I‘
0 otherwise

.

This uniform distribution has zero mean and the variance is
equal to 1



1 Illustration of ICA
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Statistical Illustration of ICA

Assume that the two individual components are mixed by the
following mixing matrix,

(23
121

The mixed variables x can then be generated using the ICA
model,

X = As

1.e.

X, | (2 3)s, X, =2, +35,
X, | 2 1)s5, X, =28, +15,




Statistical Illustration of ICA

* 'The following shows joint distribution of the mixtures x; and x,,

Note that the random variables x; and x, are xof independent any more; an easy way to see this is to consider,
whether it is possible to predict the value of one of them, say x,, from the value of the other. Clearly if x,

attains one of its maximum or minimum values, then this completely determines the value of x,. They are
therefore not independent.

Notice anything interesting ?!l! 2 3

(Hint: Related to mixing matrix A) 2 1



Statistical Illustration of ICA
e Answer:

— The edges of the parallelogram are the directions of

the columns of A,
X2 X2

(2,2)

(2,1)

X1

X2

2
2

3
1

This means that we could, i princple, estimate the ICA model by first

estimating the joint density of x; and x,, and then /ocating the edges. So, the
problem seems to have a solution.



Statistical Illustration of ICA

* HOWEVER, this method works pootly in reality because
it only works with variables that has #niform distributions.

* Moreover, it would be computationally quite
complicated.

* What we need 1s a method that works for any
distributions of the independent components, and works
fast and reliably.



Problem Formulation

~

Ghe goal of ICA is to find a linear mapping W such

that the unmixed sequences 4,

u(t) = Wx(t) = W A s(¢)

are maximally statistically independent. /

\




What is Independence ?!!!

* To define the concept of independence, consider two scalar-valued random wvariables
y; and y,.

— Basically, the variables y, and vy, are said to be independent if information on the value of v, does not
' Y1 Y2 p Y1
give any information on the value of y,, and vice versa.

* Technically, independence can be defined by the probability densities.
— Let us denote by p(y,,y,) the joint probability density function (pdf) of y; and y,.

— Let us further denote by p,(y;) the marginal pdf of y,, i.e. the pdf of y; when it is considered alone,
likewise, p,(y,) the marginal pdf of y,

p(v)=[ p(ye. o )dy, and  p,(y,)={ p(y.. ¥, )dy,

* 'Then, we define y, and y, are independent if and only if the joint pdf is factorizable in
the following way:

p(yl’ Y, ) = pl(yl)pZ(yZ)

* This definition extends naturally for any number 7 of random variables, in which case
the joint density must be a product of 7 terms.



What is Independence ?!!!

* The definition can be used to derive the most important property of independent

random variables.

* Given two functions, », and 4,, we always have:

E{hy (v:)ho (v, )i = Edhy (v, )IE{h,(y, )}

* This can be proved as follows:

p(yl’ Y, ) = pl(yl)pZ(yZ)

)} = [[ (v (v2)p (s, 2 dysdly,
..[h yl yl)h (yZ)p(yz )dY1dy2
= [ h.(y,)p(y; )dy, [, (y,)p(y, )dy,

=E{h (v, )JEh,(y,)}




Uncorrelated does not mean Independent

A weaker form of independence 1s uncorrelatedness. Two random variables y; and y,

)

are said to be uncotrrelated, if their covariance is zero:

C(¥y: ¥,) = E{(y, — E{y, Ny, —E{y,
= E{Y,Y,J— E{y,JE{y,}=0

If the variables are independent, they are uncorrelated,

E{Y.Y, = EWLELY, f= EVY, - EY ELY, =0

On the other hand, uncorrelatedness does not imply independence.

— TFor example, assume that (y;,y,) are discrete valued and follow such a distribution that the pair are with
probability 1/4 equal to any of the following values: (0,1), (0,—1), (1,0), (—1,0). Then y, and vy, ate
uncorrelated, but not independent.

Ely2y?}=0#Y4=Ey2[Ely?|

Since independence implies uncorrelatedness, many ICA methods constrain the
estimation procedure so that it always gives uncorrelated estimates of the independent
components. This reduces the number of free parameters, and simplifies the problem.



Gaussian variables are forbidden, Why?!!!

* The fundamental restriction in ICA is that the independent
components must be non-gaussian tor ICA to be possible.

X
* To see why gaussian variables make ICA impossible, assume °
that the mixing matrix is orthogonal and the s;are Gaussians.
Then x; and x, are Gaussians too (by central limit theorem), N
they are uncorrelated, and of unit variance. Their joint L

density is given by; X2 +x2

p(Xl,X2)=%e ’

* 'The figure shows that the density 1s completely symmetric.
Therefore, it does not contain any information on the

directions of the columns of the mixing matrix A. This 1s
why A cannot be estimated.

Moreover, the distribution of any orthogonal transformation
of the Gaussian (x,,%,) has exactly the same distribution as

<X1>X2> .

Thus, in the case of Gaussian variables, we can only estimate
the ICA model up to an orthogonal transformation.



Gaussian variables are forbidden, Why?!!!

ﬁX#\S—\’ hICA—\’

S.

* The trick now is how to
measure “non-Gaussianity”?!|




Non-Gaussianity Estimation

* The Central Limit Theorem

— Distribution of a sum of independent random wvariables
tends toward a Gaussian distribution.

— Thus, a sum of two independent random variables usually
has a distribution that is closer to gaussian than any of the
two original random variables.



Non-Gaussianity Estimation

I.et us now assume that the data vector x is distributed
according to the ICA data model, 1.e. a mixture of independent
components.

For simplicity, let us assume that all the independent
components have identical distributions.

To estimate one of the independent components, we consider a
linear combination of the x,, let’s denote this by y ;

y=w!

X

whetre w is a vector to be determined, and it’s one row of the inverse of A, 1.e. W



Non-Gaussianity Estimation

Define z = ATw and then we have,

y =wix = wlAs = zTs

This linear combination would actually equal one of the independent
components.

The question 1s now:

— How could we use the Central Limit Theorem to determine w so that it would equal one of
the rows of the inverse of A?

— In practice, we cannot determine such w exactly, because we have no knowledge of matrix
A, but we can find an estimator that gives a good approximation.
zTs is more Gaussian than any of the s;, and it is least Gaussian (i.e. non-
guassian) if it is equal to one of the s,

Maximizing the non-Gaussianity of wTx will give us one of the independent

components.



Non-Gaussianity Estimation

Measurement of non-Gaussianity

e Kurtosis
— Defined by: kurt(y) = E{y*} — 3(E{y*})

— Since y 1s of unit variance, the kurtosis equation simplifies to
E{y*} — 3. Therefore, the kurtosis can be considered as the
normalized version of the fourth moment E{y*}.

— The kurtosis for a (Gaussian is zero because the fourth
moment is equal to 3(E{)*})>.

— For most nongaussian random variables, the wvalue for
kurtosis is nonzero.

— However Kurtosis 1s very sensitive to outliers when its value

has to be estimated from a measured sample.



20

Non-Gaussianity Estimation

Measurement of non-Gaussianity

e Kurtosis

— Kurtosis can be positive or negative. Random variables that have negative
kurtosis are called subgaussian, having a “flat” pdf and those with positive values
for kurtosis are referred to as supergaussian, having a “spiky” pdf with heavy tails.

10

°7r 1 *  Super-Gaussian = more peaked, than
0.6 - - . . .
Gaussian, heavier tail
0.5 4
ot 1 *  Sub-Gaussian = flatter, more uniform,
>l | shorter tail than Gaussian
ozt i
0.1 4
e b. and .
Super-Gaussian Gaussian Sub-Gaussian Sub-an Super-GaUSSIan
3 1.5 15
2 X . 1 10
1 05 o5t
0 0 of
1 05 05}
- 2 1 !
3 -15 5




Non-Gaussianity Estimation

. .
Measurement of non-Gaussianity
* Negentropy
— Based on the information-theoretic quantity of enfrgpy. ~ llmm -

— The entropy of a random variable can be interpreted as the degree of information
that the observation of the variable gives. The more unpredictable (random) and
unstructured the variable is, the larger the entropy value.

High entropy

— For a discrete random variable Y, the entropy H is defined as:  pv)

H(=-SP(=a)iogP(¥=a) .

where 4 are the possible values of Y.

— The entropy definition can also be generalized to the continuous case and is often
called the differential entropy. The differential entropy H of a random variable y
with density f{y) is defined as:

H(y):—jf(y)logf(y)dy



Non-Gaussianity Estimation

Measurement of non-Gaussianity

Negentropy

The Gaussian random variable has the largest entropy among all random
variables of equal variance, which means that entropy can be used to measure
nongaussianity.

To obtain a measure of nongaussianity that is zero for Gaussian random variables
and always nonnegative, a slightly modified version of differential entropy is

employed, which is called negentropy.

Negentropy [ is defined as:
J (y) =H (ygauss)_ H (y)

The use of negentropy as a measure for nongaussianity is well-justified in
information theory but the problem with it lies in it being computationally difficult to
compute. There are several approximations for entropy in the literature to alleviate
this problem.




Non-Gaussianity Estimation

Measurement of non-Gaussianity

Approximations of Negentropy

The classical method of approximating negentropy is using higher-order

Lot Ly
)= BT + g kurtly)

The random variable y is assumed to be of zero mean and unit variance. However,

moments:

the validity of such approximations may be rather limited.

To avoid the problems encountered with the preceding approximation, new
approximations were developed based on the maximum-entropy principle:

awﬁ& [E{G,(y)}—EG,\)f

where £; are some positive constants, and » is a Gaussian variable of zero mean
and unit variance . The variable y is assumed to be of zero mean and unit
variance, and the functions G, are some nonquadratic functions

In particular, choosing G that does not grow too fast, one obtains more robust
estimators. The following choices of G have proved very useful:

Gl(u)z % log cosh a,u , G, (U) = —exp(— U2/2) where 1 =<a,=<2 is constant



Principles of ICA Estimation

* 'Two popular methods in estimating the ICA
model are,

1. Minimization of Mutual Information

2. Maximum Likelthood Estimation



1. Minimization of Mutual Information

* Using the concept of differential entropy, mutual information
between 7 random variables can be defined as follows,

(Y1 Yorees Yin) = Z H(y;)—H(y)

* Mutual information is the natural measure of the dependence
between random variables. Its value 1s always nonnegative, and
zero if and only if the variables are statistically dependent.

* When the original random vector x undergoes an invertible
linear transformation y = Wx, the mutual information for y in
terms of x is

(Y1 Vi) ZH (y;)- )—log |det W/|



1. Minimization of Mutual Information

Consider the scenario when j.1s constrained to be uncorrelated and of unit
variance, which implies that E{yy'} = WE{xx'"}WT = I. Applying the

determinant on all sides of the equation leads to:
det | =1 =det(WE xx" W )= (detW )det E {xx" fdetw ™)
Hence detW must be constant since det E{xxT} does not depend on W.

For y of unit variance, entropy and negentropy differ only by a constant and
sigh. Therefore, the fundamental relation between entropy and negentropy is:

(e ¥2) = C =23 ()

where Cis a constant not dependent on W.

Thus finding an invertible transformation W that minimizes the mutual

information is roughly equivalent to finding directions in which negentropy (a

concept related to nongaussianity) is maximized.




2. Maximum Likelihood Estimation

To derive the likelihood of the noise-free ICA model, a well-known result on
the density of a linear transform 1s used. According to the result, the density
p,. of the mixture vector (the ICA model), x = As 1s

f,(x)=[detW]| f,(s) = detW\li[ f(s.)

where W = Al and /. denote the densities of the independent components s;.

The density p,_can also be expressed as a function of x and W = (w;, w, ...
w1, that is, i
f (x)=|detW[[ ] f (wx)
i-1

Assuming that there are T observations of x, denoted by x(1), x(2), ..., x(1),
and after some manipulations, the final equation for the log-likelithood 1s:

L= izn: log f, (WiTX(t))—I-T log|detW |

t=1 i=1

Problem: Density functions f, must be estimated correctly, otherwise ML
estimation will give a wrong result.



Preprocessing for ICA

1. Centering

The most basic and necessary preprocessing is to center the data
matrix X, that is, subtract the mean vector, p= E(X) to make the
data a zero-mean variable.

With this, s can be considered to be zero-mean, as well.

After estimating the mixing matrix A, the mean vector of s can
be added back to the centered estimates of s to complete the
estimation.

The mean vector of s is given by Al p, where p is the mean
vector of the data matrix X.



Preprocessing for ICA
2. Whitening

Aside from centering, whitening the observed variables 1s a useful preprocessing step in

ICA.

The observed vector x 1s linearly transformed to obtain a vector that is white, which
means its components are uncorrelated and the variance 1s equal to unity.

~~T
E {xx }z I
In terms of covariance, the covariance of the new vector X equals the identity matrix,

1.e.

One popular method for whitening is to use the eigen-value decomposition (EVD) of
the covariance matrix

E{xx" }=VDV

where Vis the orthogonal matrix of eigenvectors of E{xx'} and D is the diagonal matrix of its

eigenvalues, D = diag(d,, ...,d,).



Preprocessing for ICA
2. Whitening

Whitening can now be done by:
= ~ oy T
X =VD /A" x
where the matrix D™/2is computed by a simple component-wise operation as D™/2 = diag(d, /2, ...,d, 7'/?).
Whitening transforms the mixing matrix into a new one,
X =VD A/ Tx =VD '/ As = As
Here we see that whitening reduces the number of parameters to be estimated.

Instead of having to estimate the v parameters that are the elements of the~original
matrix A, we only need to estimate the new, orthogonal mixing matrix A which

contains #(n—1)/2 degtrees of freedom.

Thus one can say that whitening solves half of the problem of ICA.

For simplicity of notation, we denote the preprocessed data just by x, and the
transformed mixing matrix by A, omitting the #/des.



Preprocessing for ICA
2. Whitening

Because whitening is a very simple and standard procedure, much simpler
than any ICA algorithms, it 1s a good idea to reduce the complexity of the
problem this way.

It may also be quite useful to reduce the dimension of the data at the same
time as we do the whitening.

Then we look at the eigen values d;of E{xxT} and discard those that are too
small, as i1s often done in the statistical technique of principal component

analysis (PCA).

This has often the effect of reducing noise. Moreover, dimension reduction
prevents over-learning, which can sometimes be observed in ICA.



Preprocessing for ICA
Centering + Whitening = Sphering

* Centering and whitening combined 1s referred to as sphering, and
is necessary to speed up the ICA algorithm.

*  Sphering removes the first and second-order statistics of the data;
both the mean and covariance are set to zero and the variance
are equalized.



ICA — Example of Algorithms

* In what follows, we will discuss two approaches for
estimating independent components given the observed
mixture X :

— ICA gradient ascent:

This algorithm 1s based on maximizing the entropy of the estimated
components, Matlab code will be provided as illustration.

— FastICA

This algorithm 1s based on minimizing mutual information, you can
download the source code from

http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.html



http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.html

ICA Gradient Ascent

Assume that we have » mixtures x;, ..., X, of 7 independent
components/sources Syy ...y S, :

X, = ay8;+ agsyt...+ays,  forall
Assume that the sources has a common cumulative density function (cdf) g

and probability density function (pdf) p..

Then given an unmixing matrix W which extracts #» components u = (uy, ...,
u_)! from a set of observed mixtures x, the entropy of the components U =
g(u) will be, by definition:

H(U)=H(x)+E iz”l;m p.(u,)\+ Inw|

x is the 7th component, which is extracted by the 7th row of the
unmixing matrix W. This expected value will be computed using 7z sample values of
the mixtures X.

where u; = w,T



ICA Gradient Ascent

By definition, the pdf p, of a variable is the derivative of that variable’s cdf g

()= g(u,)

du,

Where this dertvative 1s denoted by g'(u;) = p,(u,), so that we can write:

H(U)=H(X)+ E{iznl:lng'(ui)}ﬂny\lv

We seek an unmixing W that maximizes the entropy of U.

Since the entropy H(x) of the mixtures x 1s unaffected by W, its contribution
to H(U) 1s constant, and can therefore be ignored.

Thus we can proceed by finding that matrix W that maximizes the function:

(U)= E{iz::lng'(ui)}ﬂny\/v

Which is the change 1n entropy associated with the mapping from x to U.



ICA Gradient Ascent

h0)=E{ Sing )+

We can find the optimal W* using gradient ascent on / by iterartively
adjusting W in order to maximize the function h.

In order to perform gradient ascent efficiently, we need an expression for the
gradient of / with respect to the matrix W.

We proceed by finding the partial derivative of 5 with respect to one scalar

clement Wy; of W, where W, is the element of the 7th row and jth column of
Ww.

The weight W;; determines the proportion of the jth mixture x; in the zth
extracted component u,.



ICA Gradient Ascent

* Given that u = Wx, and that every component u, has the same pdf g

* The partial derivative of 5 with respect to the 7th element in W is:

¢ -l g o

~ oW oW,

ij

=E Zn: ‘(1ui)ag\'/f/ji)}+MT]” where W‘T:(WT)*1

and M - ]ij is the ijth element of (WT )

i } + M T ]i j using the chain rule
ij




ICA Gradient Ascent
If we consider all the element of W, then we have:
Vh=W" +Efy(u)" |

where VN 1s an 7 x 7 Jacobian matrix of derivatives in which the 7th element

is oh
s N

Given a finite sample of N observed mixture values of x* for £ = 7,2,...,N
and a putative unmixing matrix W, the expectation can be estimated as:

E{y (u)x™ }= %ZN;w(UkXXk]T where u* =Wx"

Thus the gradient ascent rule, in its most general form will be:

W, =W, +7Vh where 7 isasmall constant

Thus the rule for updating W in order to maximize the entropy of U = g(u) is
therefore given by:

W_ =W+ W —%ZN:tanh(uklx"]T
k=1

new old




FastICA

FastICA 1s a very efficient method of maximizing the measures of
non-Gaussianity mentioned earlier.

In what follows, we will assume that the data has been centered and
whitened.

FastICA a version of the ICA algorithm that can also be described as
a neural network

Let’s look at a single neuron in this network, 1.e. we will first start with
a single-unit problem, then generalize to multiple units.

Go to implementation




FastICA

S (n)-sin(100n)cos(10n) s,= sign(sin(10n)) s,=rand(n)
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FastICA — One Unit

* The goal is to find a weight vector w that maximizes the negentropy estimate:

I(wx)ox (ElGW' x)j- E{G(V)})

v 1s a Gaussian variable of zero mean and unit variance

* Note that the maxima of Jw'x) occurs at a certain optima of E{Gw!x)},
since the second part of the estimate is independent of w.

* According to the Kuhn-Tucker conditions, the optima of E{G(»'x)} under
the constraint E{(w'x)}=||w||?=1 occurs at points where:

F(w)=E{xg(w"x)}— pw=0
— where g(u)=dG(u)/du

— 'The constraint E{(w'x)’}=| |w| |?=1 occurs because the variance of w’x must be
equal to unity (by design): if the data is pre-whitened, then the norm of w must
be equal to one

* The problem can be solved as an approximation of Newton method

— To find a zero of f(x), apply the iteration x_,, = x_- f(x.)/f’(x,)



FastICA — One Unit

Computing the Jacobian of F(w) yields:
JF(w)= %(W) = E{x" g'(w'x)j- A1 =0

To simplity inversion of this matrix, we approximate the first term of the
expression by noting that the data is sphered;

E{xxT g'(wT x)}z E{xxT }E {g'(wT x)}: E{g'(WT x)}l\

\p
scalar

So the Jacobian is diagonal, which simplifies the inversion
Thus, the (approximate) Newton’s iteration becomes;

W E{x g(wT x)}—ﬁw
B\ (W' x)j—

This algorithm can be further simplified by multiplying both sides by pg-
E{g’'(w'x)}, which yields the FastICA iteration.




FastICA Iteration

(1) Choose an initial (e.g., random) weight vector w.

W = E{x g(wT x)}— E{g'(wT x)}w

2) Let

(3) Let

+

W
W=——o
| w |

(4) It not converged, go back to (2)

.

gl(u):

du

g )
G,(u)= i logcoshau , G,(u)= —eXp(— u2/2) Note
dGl(U):tanh(aiu), gZ(U):M:uexp<_u2/2)

du




FastICA — Several Units

* To estimate several independent components, we run the one-

unit FastICA with several units w,, w,, ..., W,

* 'To prevent several of these vectors from converging to the same

T T T

solution, we decorrelate outputs w; x, w, X, ..., W, X at each

1teration.

* This can be done using a deflation scheme based on Gram-
Schmidt as follows.



FastICA — Several Units

We estimate each independent component one by one

With p estimated components w;,w,,.. Wy, WE tun the one-unit ICA iteration for Wi

After each iteration, we subtract from w,,,, its projections (WTp 4W;)w; on the previous

vectors W]

Then, we renormalize Wh i1

p
]
(Dlet Wy, =W, — > W ,W,W,
-1

W
(2)Let w_, = b+

p+1 T
Wp+1Wp+1

Or, it all components must be computed simultaneously (to avoid asymmetries), the
following iteration proposed by Hyvarinen can be used:

DLet W =

Iww™ |

(2) Re peat until convergence W = gW = %WWTW



~ Let’sdo 1t ...

ICA Gradient Ascent

* Dataset generation
* Preprocessing
* Finding the unmixing matrix W

* HEstimated independent components
(sources) u.



Let’s do it ...

Dataset Generation

% Set random number seed.
seed=9; rand('seed' ,seed); randn('seed', seed);

% n = number of source signals and signal mixtures. 'va)audﬁ)SgyuﬂS\Vﬂlbellaaias
n=2; . . .

% N = number of data points per signal. sources, then mixed signals will
N = le4; be generated from them

% Load data, each of n=2 columns contains a different
source signal. /r ‘\

% Each column has N rows (signal values).

% Load standard matlab sounds
(from MatLab's datafun directory)
% Set wvariance of each source to unity.
load ('chirp.mat','y'); sl=y(1l:N); sl=sl/std(sl);
load ('gong.mat','y'); s2=y(1l:N); s2=s2/std(s2);

% Combine sources into wvector wvariable s.
s=[sl,s2];

% Make new mixing matrix.
A = randn(n,n) ;

% Make n mixures X from n source signals s.
X = s*4A;
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Let’s do it ...

Dataset Generation
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http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav

Let’s do it ...

Preprocessing

% Preprocessing

% 1. Centering

Mu = mean (Xx) ;

X = X - repmat (Mu, [N,1]) ;

Observed mixture after centering

Observed mixture before centering




Let’s do it ...

Preprocessing

% Preprocessing

% 2. Whitening Recall
SX = xX'*x; - j% T
[V,D] = eig(Sx); X =VD 74V "X
X = V*sgrt(inv (D)) *V'*x';
Observed mixture after centering Obsetved mixture after whitening
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Let’s do it ...

Something
interesting !!!

The preprocessing step caused
increased the gaussianity of the
data at hand, hence ICA will
fail to estimate the independent
components.



Estimating W

Initialization

% Initialise unmixing matrix W to identity matrix.
W = eye(n,n);

% Initialise u, the estimated source signals.
u = X*W;

% Print out initial correlations between
% each estimated source u and every source signal s.

r = corrcoef ([u s]);
fprintf('Initial correlations of source and extracted signals\n');

rinitial = abs(r(n+1l:2*n,1:n))

maxiter=10000; % [100] Maximum number of iterations.
eta=1; % [0.25] Step size for gradient ascent.

% Make array hs to store values of function and gradient magnitude.
hs = zeros (maxiter,1);
gs = zeros (maxiter,1);




Estimating W

Begin gradient ascenton h ... ©

W_ =W +7n W' —%itanh(utlxtf
t=1

for iter=1:maxiter
% Get estimated source signals, u.
u = xX*W,; % wt vec in col of W.
% Get estimated maximum entropy signals U
U = tanh (u) ;
% Find value of function h.
% h = log(abs(det(W))) + sum( log(eps+1-U(:)."2) )/N;
detW = abs (det (W) ) ;
h = ( (1/N) *sum(sum(U)) + 0.5*log(detwW) ) ;
% Find matrix of gradients @h/@W_Jji ... 1,

g =inv(W') = (2/N) *x'*U;

:; ZP;a:eePEaig;increase h ... ( _ {Zln g'(u ( }+|HM|

% Record h and magnitude of gradien

hs (iter)

gs (iter)
end;

cdf (u)

h;
norm(g(:));



Estimated Sources — With Sphering
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Let’s do it ...
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Gradient Magnitude
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Estimated Sources — Without Sphering

Let’s do it ...

Graph of magnitude of gradient of 4 during 14r
gradient ascent. At a maximum in / the gradient
magnitude should be zero. As can be seen the L2
. . Function values - Entropy
gradient magnitude converges towards zero
. . 1k
suggesting that a maximum has been reached.
0.8
S o6}
L Magnitude of Entropy Gradient =
04}
02}
O L.
_02 r r r r [
200 400 600 800 1000
Tterathon #
i Graph of / during the gradient ascent. This
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Take Home Messages ©

* ICA relies on the assumption of
— Statistically Independent underlying signals
— That are non-Gaussian

— zero mean and fixed variance

* The algorithm involves
— minimizing mutual information between signals
— which leads to maximizing non-gaussinaity
— which leads to minimizing negentropy
— which is approximated

— which results in a NN-like update algorithm



Conclusion

ICA 1s used to determine the most independent components in a
mixed dataset

Both mixing matrix and source signal are unknown in the ICA
model

Various estimation techniques are developed to evaluate the
independent components in an ICA model, including Non-
Gaussianity Estimation, Minimization of Mutual Information
and Maximum Likelihood Estimation

ICA can be use to extract and filter mixed dataset in numerous
real life applications, such as separation of artifacts in MEG data
and extraction of hidden driving mechanisms in economy:.
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