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Motivation - Cocktail-Party Problem

• Simple scenario:

– Two people speaking simultaneously in a room.

– Speeches are recorded by two microphones in separate locations.

http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav


Motivation - Cocktail-Party Problem

• Let s1(t), s2(t) be the speech signals emitted by the

two speakers.

• Recorded time signals, by the two microphones, are

denoted by x1(t), x2(t).

• The recorded time signals can be expressed as a

linear equation:

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t)

where parameters in matrix A depend on distances

of the microphones to the speaker, along with

other microphone properties

• Assume s1(t) and s2(t) are statistically independent.

x2(t)

http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav


Motivation - Cocktail-Party Problem

Goal:

– Recover the unmixed speech signals, best

estimate ui(t), without knowing A or si(t).

ICA

x2(t)

http://www.cis.hut.fi/projects/ica/cocktail/001000010est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/001000010mix1.wav


Motivation - Cocktail-Party Problem

x2(t) : observed mixture

ICA

The original signals were very accurately estimated, up to multiplicative signs



ICA versus PCA
• Similarity

– Feature extraction

– Dimension reduction

• Difference

– PCA uses up to second order moments of the data to
produce uncorrelated components.

– ICA strives to generate components as independent
as possible through minimizing both the second-
order and higher-order dependencies in the given
data.



ICA versus PCA

PCA finds directions of  maximal 

variance (using second order 

statistics)

ICA finds directions which 

maximize independence (using 

higher order statistics)



Definition of  ICA

• Assume that we have n mixtures x1, …, xn of n independent

components:

xj = aj1s1+ aj2s2+…+ ajnsn for all j

The time index t has dropped in ICA model, since we assume that each mixture and

individual components are random variables instead of a proper time signal. Thus the

observed values xj(t), e.g. the microphone signals in the cocktail party problem, are

then a sample/realization of this random variable.

• Without loss of generality, we can assume that both the mixture

variables and the independent components have zero mean.

If this is not true, then the observable variables xj can always be centered by

subtracting the sample mean, which makes the model zero-mean.



Definition of  ICA

• The equation can be expressed using vector-matrix notation,

x = As

where

x : random vector whose elements are the mixtures x1,…,xn

s : random vector whose elements are the sources s1,…,sn

A : mixing matrix with elements aij

• Expression in columns of matrix A, 
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Definition of  ICA

• This statistical model is called independent component

analysis, or ICA model.

• ICA model is a generative model, since it describes how

the recorded data are generated by mixing the

individual components.



ICA – Assumptions

• The starting point for ICA is the very simple assumption that the

components si are statistically independent – explained later.

• It will be shown that we must also assume that the independent component

must have nongaussian distributions. However, in the basic model we do not

assume these distributions known (if they are known, the problem is

considerably simplified.)

• For simplicity, we are also assuming that the unknown mixing matrix is

square, but this assumption can be sometimes relaxed.

• Then, after estimating the matrix A, we can compute its inverse, say W, and

obtain the independent component simply by:

s = A-1x = Wx



BSS - Blind Source Separation

• ICA is very closely related to the method called blind source separation (BSS) or

blind signal separation.

• A “source” means here an original signal, i.e. independent component, like

the speaker in a cocktail party problem.

• “Blind” means that we know very little, if anything, on the mixing matrix A,

and make little assumptions on the source signals.

• ICA is one method, perhaps the most widely used, for performing blind

source separation.



Blind
Source

BSS - Blind source separation

Independent
components

… …

Observed
sequences

ns

s

s

2

1

Recovered 
independent 
components

nu

u

u

2

1



Ambiguities of  ICA

Two major ambiguities:

1. The variances (energies) of the independent

components si cannot be determined.

 Since both s and A are unknown, any scalar multiplier of source si can

be cancelled by dividing the corresponding column ai of A with the

same scalar value.

 As a consequence, we may quite as well fix the magnitudes of the

independent components; as they are random variables, the most

natural way to do this is to assume that each has unit variance: E{si
2}=

1.

 Note that this still leaves the ambiguity of the sign: we could multiply

the an independent component by −1 without affecting the model.

This ambiguity is, fortunately, insignificant in most applications.



Ambiguities of  ICA

Two major ambiguities:

2. The order of the independent components cannot

be determined.

 Again, since s and A are unknown, order of the terms in the model can

be changed freely, and we can call any of the independent components

the first one.



Statistical Illustration of  ICA

• Consider two independent components have the following

uniform distributions,

• This uniform distribution has zero mean and the variance is

equal to 1
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Statistical Illustration of  ICA

• The graphical view of the joint distribution is shown as

following,

s2

s1



Statistical Illustration of  ICA

• Assume that the two individual components are mixed by the

following mixing matrix,

• The mixed variables x can then be generated using the ICA

model,

x = As

i.e.
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Statistical Illustration of  ICA
• The following shows joint distribution of the mixtures x1 and x2,

Note that the random variables x1 and x2 are not independent any more; an easy way to see this is to consider,

whether it is possible to predict the value of one of them, say x2, from the value of the other. Clearly if x1

attains one of its maximum or minimum values, then this completely determines the value of x2. They are

therefore not independent.

Notice anything interesting ?!!!

(Hint: Related to mixing matrix A0)
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Statistical Illustration of  ICA
• Answer:

– The edges of the parallelogram are the directions of

the columns of A0.

This means that we could, in principle, estimate the ICA model by first

estimating the joint density of x1 1and x2 2, and then locating the edges. So, the

problem seems to have a solution.

x2
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Statistical Illustration of  ICA

• HOWEVER, this method works poorly in reality because

it only works with variables that has uniform distributions.

• Moreover, it would be computationally quite

complicated.

• What we need is a method that works for any

distributions of the independent components, and works

fast and reliably.



Problem Formulation

The goal of ICA is to find a linear mapping W such
that the unmixed sequences u,

are maximally statistically independent.



What is Independence ?!!!

• To define the concept of independence, consider two scalar-valued random variables

y1 and y2.

– Basically, the variables y1 and y2 are said to be independent if information on the value of y1 does not

give any information on the value of y2, and vice versa.

• Technically, independence can be defined by the probability densities.

– Let us denote by p(y1,y2) the joint probability density function (pdf) of y1 and y2 .

– Let us further denote by p1(y1) the marginal pdf of y1, i.e. the pdf of y1 when it is considered alone,

likewise, p2(y2) the marginal pdf of y2

• Then, we define y1 and y2 are independent if and only if the joint pdf is factorizable in

the following way:

• This definition extends naturally for any number n of random variables, in which case

the joint density must be a product of n terms.

         1212222111 ,, dyyypypanddyyypyp

     221121, ypypyyp 



What is Independence ?!!!

• The definition can be used to derive the most important property of independent

random variables.

• Given two functions, h1 and h2, we always have:

• This can be proved as follows:
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Uncorrelated does not mean Independent

• A weaker form of independence is uncorrelatedness. Two random variables y1 and y2

are said to be uncorrelated, if their covariance is zero:

• If the variables are independent, they are uncorrelated,

• On the other hand, uncorrelatedness does not imply independence.

– For example, assume that (y1,y2) are discrete valued and follow such a distribution that the pair are with

probability 1/4 equal to any of the following values: (0,1), (0,−1), (1,0), (−1,0). Then y1 and y2 are

uncorrelated, but not independent.

• Since independence implies uncorrelatedness, many ICA methods constrain the

estimation procedure so that it always gives uncorrelated estimates of the independent

components. This reduces the number of free parameters, and simplifies the problem.
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x2

x1

Gaussian variables are forbidden, Why?!!!

• The fundamental restriction in ICA is that the independent

components must be non-gaussian for ICA to be possible.

• To see why gaussian variables make ICA impossible, assume

that the mixing matrix is orthogonal and the si are Gaussians.

Then x1 and x2 are Gaussians too (by central limit theorem),

they are uncorrelated, and of unit variance. Their joint

density is given by;

• The figure shows that the density is completely symmetric.

Therefore, it does not contain any information on the

directions of the columns of the mixing matrix A. This is

why A cannot be estimated.

• Moreover, the distribution of any orthogonal transformation

of the Gaussian (x1,x2) has exactly the same distribution as

(x1,x2).

• Thus, in the case of Gaussian variables, we can only estimate

the ICA model up to an orthogonal transformation.
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Gaussian variables are forbidden, Why?!!!

The trick now is how to 

measure “non-Gaussianity”?!!



Non-Gaussianity Estimation

• The Central Limit Theorem

– Distribution of a sum of independent random variables

tends toward a Gaussian distribution.

– Thus, a sum of two independent random variables usually

has a distribution that is closer to gaussian than any of the

two original random variables.



Non-Gaussianity Estimation

• Let us now assume that the data vector x is distributed

according to the ICA data model, i.e. a mixture of independent

components.

• For simplicity, let us assume that all the independent

components have identical distributions.

• To estimate one of the independent components, we consider a

linear combination of the xi, let’s denote this by y ;

y = wTx

where w is a vector to be determined, and it’s one row of the inverse of A, i.e. W



Non-Gaussianity Estimation
• Define z = ATw and then we have,

y = wTx = wTAs = zTs

• This linear combination would actually equal one of the independent

components.

• The question is now:

– How could we use the Central Limit Theorem to determine w so that it would equal one of

the rows of the inverse of A?

– In practice, we cannot determine such w exactly, because we have no knowledge of matrix

A, but we can find an estimator that gives a good approximation.

• zTs is more Gaussian than any of the si, and it is least Gaussian (i.e. non-

guassian) if it is equal to one of the si

• Maximizing the non-Gaussianity of wTx will give us one of the independent

components.



Non-Gaussianity Estimation
Measurement of  non-Gaussianity

• Kurtosis

– Defined by: kurt(y) = E{y4} – 3(E{y2})2

– Since y is of unit variance, the kurtosis equation simplifies to

E{y4} – 3. Therefore, the kurtosis can be considered as the

normalized version of the fourth moment E{y4}.

– The kurtosis for a Gaussian is zero because the fourth

moment is equal to 3(E{y2})2.

– For most nongaussian random variables, the value for

kurtosis is nonzero.

– However Kurtosis is very sensitive to outliers when its value

has to be estimated from a measured sample.



• Kurtosis

– Kurtosis can be positive or negative. Random variables that have negative

kurtosis are called subgaussian, having a “flat” pdf and those with positive values

for kurtosis are referred to as supergaussian, having a “spiky” pdf with heavy tails.

Sub- and Super-Gaussian

• Super-Gaussian = more peaked, than 

Gaussian, heavier tail

• Sub-Gaussian = flatter, more uniform, 

shorter tail than Gaussian

Non-Gaussianity Estimation
Measurement of  non-Gaussianity



Non-Gaussianity Estimation
Measurement of  non-Gaussianity

• Negentropy

– Based on the information-theoretic quantity of entropy.

– The entropy of a random variable can be interpreted as the degree of information

that the observation of the variable gives. The more unpredictable (random) and

unstructured the variable is, the larger the entropy value.

– For a discrete random variable Y, the entropy H is defined as:

where ai are the possible values of Y.

– The entropy definition can also be generalized to the continuous case and is often

called the differential entropy. The differential entropy H of a random variable y

with density f(y) is defined as:

     logi i

i
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Non-Gaussianity Estimation
Measurement of  non-Gaussianity

• Negentropy

– The Gaussian random variable has the largest entropy among all random

variables of equal variance, which means that entropy can be used to measure

nongaussianity.

– To obtain a measure of nongaussianity that is zero for Gaussian random variables

and always nonnegative, a slightly modified version of differential entropy is

employed, which is called negentropy.

– Negentropy J is defined as:

– The use of negentropy as a measure for nongaussianity is well-justified in

information theory but the problem with it lies in it being computationally difficult to

compute. There are several approximations for entropy in the literature to alleviate

this problem.

     gaussJ y H y H y 



Non-Gaussianity Estimation
Measurement of  non-Gaussianity

• Approximations of Negentropy

– The classical method of approximating negentropy is using higher-order

moments:

– The random variable y is assumed to be of zero mean and unit variance. However,

the validity of such approximations may be rather limited.

– To avoid the problems encountered with the preceding approximation, new

approximations were developed based on the maximum-entropy principle:

– where ki are some positive constants, and v is a Gaussian variable of zero mean

and unit variance . The variable y is assumed to be of zero mean and unit

variance, and the functions Gi are some nonquadratic functions

– In particular, choosing G that does not grow too fast, one obtains more robust

estimators. The following choices of G have proved very useful:

where 1 ≤a1≤2 is constant
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Principles of  ICA Estimation

• Two popular methods in estimating the ICA

model are,

1. Minimization of Mutual Information

2. Maximum Likelihood Estimation



• Using the concept of differential entropy, mutual information I

between m random variables can be defined as follows,

• Mutual information is the natural measure of the dependence

between random variables. Its value is always nonnegative, and

zero if and only if the variables are statistically dependent.

• When the original random vector x undergoes an invertible

linear transformation y = Wx, the mutual information for y in

terms of x is


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1. Minimization of  Mutual Information
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• Consider the scenario when yi is constrained to be uncorrelated and of unit

variance, which implies that E{yyT} = WE{xxT}WT = I. Applying the

determinant on all sides of the equation leads to:

• Hence detW must be constant since det E{xxT} does not depend on W.

• For y of unit variance, entropy and negentropy differ only by a constant and

sign. Therefore, the fundamental relation between entropy and negentropy is:

where C is a constant not dependent on W.

• Thus finding an invertible transformation W that minimizes the mutual

information is roughly equivalent to finding directions in which negentropy (a

concept related to nongaussianity) is maximized.

1. Minimization of  Mutual Information

        TTTT WxxEWWxxWEI detdetdetdet1det 

   1,..., n i

i

I y y C J y 



• To derive the likelihood of the noise-free ICA model, a well-known result on

the density of a linear transform is used. According to the result, the density

px of the mixture vector (the ICA model), x = As is

where W = A-1, and fi denote the densities of the independent components si.

• The density px can also be expressed as a function of x and W = (w1, w2 …

wn)T, that is,

• Assuming that there are T observations of x, denoted by x(1), x(2), …, x(T),

and after some manipulations, the final equation for the log-likelihood is:

• Problem: Density functions fi must be estimated correctly, otherwise ML

estimation will give a wrong result.

2. Maximum Likelihood Estimation
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Preprocessing for ICA
1. Centering

• The most basic and necessary preprocessing is to center the data

matrix X, that is, subtract the mean vector, μ= E(X) to make the

data a zero-mean variable.

• With this, s can be considered to be zero-mean, as well.

• After estimating the mixing matrix A, the mean vector of s can

be added back to the centered estimates of s to complete the

estimation.

• The mean vector of s is given by A-1 μ, where μ is the mean

vector of the data matrix X.



Preprocessing for ICA
2. Whitening

• Aside from centering, whitening the observed variables is a useful preprocessing step in

ICA.

• The observed vector x is linearly transformed to obtain a vector that is white, which

means its components are uncorrelated and the variance is equal to unity.

• In terms of covariance, the covariance of the new vector equals the identity matrix,

i.e.

• One popular method for whitening is to use the eigen-value decomposition (EVD) of

the covariance matrix

where Vis the orthogonal matrix of eigenvectors of E{xxT} and D is the diagonal matrix of its

eigenvalues, D = diag(d1, ...,dn).

  IxxE T ~~
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Preprocessing for ICA
2. Whitening

• Whitening can now be done by:

where the matrix D−1/2 is computed by a simple component-wise operation as D−1/2 = diag(d1
−1/2 , ...,dn

−1/2 ).

• Whitening transforms the mixing matrix into a new one,

• Here we see that whitening reduces the number of parameters to be estimated.

• Instead of having to estimate the n2 parameters that are the elements of the original

matrix A, we only need to estimate the new, orthogonal mixing matrix which

contains n(n−1)/2 degrees of freedom.

• Thus one can say that whitening solves half of the problem of ICA.

• For simplicity of notation, we denote the preprocessed data just by x, and the

transformed mixing matrix by A, omitting the tildes.
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Preprocessing for ICA
2. Whitening

• Because whitening is a very simple and standard procedure, much simpler

than any ICA algorithms, it is a good idea to reduce the complexity of the

problem this way.

• It may also be quite useful to reduce the dimension of the data at the same

time as we do the whitening.

• Then we look at the eigen values dj of E{xxT} and discard those that are too

small, as is often done in the statistical technique of principal component

analysis (PCA).

• This has often the effect of reducing noise. Moreover, dimension reduction

prevents over-learning, which can sometimes be observed in ICA.



Preprocessing for ICA
Centering + Whitening = Sphering

• Centering and whitening combined is referred to as sphering, and

is necessary to speed up the ICA algorithm.

• Sphering removes the first and second-order statistics of the data;

both the mean and covariance are set to zero and the variance

are equalized.



ICA – Example of  Algorithms

• In what follows, we will discuss two approaches for

estimating independent components given the observed

mixture x :

– ICA gradient ascent:

This algorithm is based on maximizing the entropy of the estimated

components, Matlab code will be provided as illustration.

– FastICA

This algorithm is based on minimizing mutual information, you can 

download the source code from 

http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.html

http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.html


ICA Gradient Ascent
• Assume that we have n mixtures x1, …, xn of n independent

components/sources s1, …, sn :

xj = aj1s1+ aj2s2+…+ ajnsn for all j

• Assume that the sources has a common cumulative density function (cdf) g

and probability density function (pdf) ps.

• Then given an unmixing matrix W which extracts n components u = (u1, …,

un )T from a set of observed mixtures x, the entropy of the components U =

g(u) will be, by definition:

where ui = wi
Tx is the ith component, which is extracted by the ith row of the

unmixing matrix W. This expected value will be computed using m sample values of

the mixtures x.
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ICA Gradient Ascent
• By definition, the pdf ps of a variable is the derivative of that variable’s cdf g:

Where this derivative is denoted by g’(ui) = ps(ui), so that we can write:

• We seek an unmixing W that maximizes the entropy of U.

• Since the entropy H(x) of the mixtures x is unaffected by W, its contribution

to H(U) is constant, and can therefore be ignored.

• Thus we can proceed by finding that matrix W that maximizes the function:

Which is the change in entropy associated with the mapping from x to U.
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ICA Gradient Ascent

• We can find the optimal W* using gradient ascent on h by iterartively

adjusting W in order to maximize the function h.

• In order to perform gradient ascent efficiently, we need an expression for the

gradient of h with respect to the matrix W.

• We proceed by finding the partial derivative of h with respect to one scalar

element Wij of W, where Wij is the element of the ith row and jth column of

W.

• The weight Wij determines the proportion of the jth mixture xj in the ith

extracted component ui.
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ICA Gradient Ascent
• Given that u = Wx, and that every component ui has the same pdf g’.

• The partial derivative of h with respect to the ijth element in W is:
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ICA Gradient Ascent
• If we consider all the element of W, then we have:

where is an n x n Jacobian matrix of derivatives in which the ijth element

is

• Given a finite sample of N observed mixture values of xk for k = 1,2,…,N

and a putative unmixing matrix W, the expectation can be estimated as:

• Thus the gradient ascent rule, in its most general form will be:

• Thus the rule for updating W in order to maximize the entropy of U = g(u) is

therefore given by:
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FastICA

• FastICA is a very efficient method of maximizing the measures of

non-Gaussianity mentioned earlier.

• In what follows, we will assume that the data has been centered and

whitened.

• FastICA a version of the ICA algorithm that can also be described as

a neural network

• Let’s look at a single neuron in this network, i.e. we will first start with

a single-unit problem, then generalize to multiple units.

G(wTx)wx s

Go to implementation



FastICA



FastICA – One Unit
• The goal is to find a weight vector w that maximizes the negentropy estimate:

v is a Gaussian variable of zero mean and unit variance

• Note that the maxima of J(wTx) occurs at a certain optima of E{G(wTx)},

since the second part of the estimate is independent of w.

• According to the Kuhn-Tucker conditions, the optima of E{G(wTx)} under

the constraint E{(wTx)2}=||w||2=1 occurs at points where:

– where g(u)=dG(u)/du

– The constraint E{(wTx)2}=||w||2=1 occurs because the variance of wTx must be

equal to unity (by design): if the data is pre-whitened, then the norm of w must

be equal to one

• The problem can be solved as an approximation of Newton’s method

– To find a zero of f(x), apply the iteration xn+1 = xn- f(xn)/f ’(xn)
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FastICA – One Unit

• Computing the Jacobian of F(w) yields:

• To simplify inversion of this matrix, we approximate the first term of the

expression by noting that the data is sphered;

So the Jacobian is diagonal, which simplifies the inversion

• Thus, the (approximate) Newton’s iteration becomes;

• This algorithm can be further simplified by multiplying both sides by β-

E{g’(wTx)}, which yields the FastICA iteration.
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FastICA Iteration

(1) Choose an initial (e.g., random) weight vector w.

(2) Let

(3) Let

(4) If not converged, go back to (2)
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FastICA – Several Units

• To estimate several independent components, we run the one-

unit FastICA with several units w1, w2, …, wn

• To prevent several of these vectors from converging to the same

solution, we decorrelate outputs w1
Tx, w2

Tx, …, wn
Tx at each

iteration.

• This can be done using a deflation scheme based on Gram-

Schmidt as follows.



FastICA – Several Units
• We estimate each independent component one by one

• With p estimated components w1,w2,…,wp, we run the one-unit ICA iteration for wp+1

• After each iteration, we subtract from wp+1 its projections (wT
p+1wj)wj on the previous

vectors wj

• Then, we renormalize wp+1

• Or, if all components must be computed simultaneously (to avoid asymmetries), the

following iteration proposed by Hyvarinen can be used:
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ICA Gradient Ascent

• Dataset generation

• Preprocessing

• Finding the unmixing matrix W

• Estimated independent components

(sources) u.

Let’s do it …



Dataset Generation
Let’s do it …

Two audio signals will be used as 

sources, then mixed signals will 

be generated from them



Dataset Generation
Let’s do it …
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Preprocessing
Let’s do it …
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Preprocessing
Let’s do it …
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Preprocessing
Let’s do it …
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Something 

interesting !!!

The preprocessing step caused

increased the gaussianity of the

data at hand, hence ICA will

fail to estimate the independent

components.



Estimating W 
Initialization



Estimating W 
Begin gradient ascent on h … 
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Estimated Sources – With Sphering
Let’s do it …
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Estimated Sources – Without Sphering 
Let’s do it …
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Estimated Sources – Without Sphering 
Let’s do it …

Graph of  h during the gradient ascent. This 

approximates the entropy of  the signals U = g(u), 

where u = Wx

Graph of  magnitude of  gradient of  h during 

gradient ascent. At a maximum in h the gradient 

magnitude should be zero. As can be seen the 

gradient magnitude converges towards zero 

suggesting that a maximum has been reached.



Take Home Messages 
• ICA relies on the assumption of

– Statistically Independent underlying signals

– That are non-Gaussian

– zero mean and fixed variance

• The algorithm involves

– minimizing mutual information between signals

– which leads to maximizing non-gaussinaity

– which leads to minimizing negentropy

– which is approximated

– which results in a NN-like update algorithm



Conclusion

• ICA is used to determine the most independent components in a

mixed dataset

• Both mixing matrix and source signal are unknown in the ICA

model

• Various estimation techniques are developed to evaluate the

independent components in an ICA model, including Non-

Gaussianity Estimation, Minimization of Mutual Information

and Maximum Likelihood Estimation

• ICA can be use to extract and filter mixed dataset in numerous

real life applications, such as separation of artifacts in MEG data

and extraction of hidden driving mechanisms in economy.
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