
In order to build on our strengths and expand our technical and scientific mission, we have added an entirely new technical core - Biomedical Image and Geometry Processing. The new Center has also implemented a broader vision of mathematical modeling and simulation that goes well beyond its current concentration on modeling bioelectric fields of particular organs to encompass other anatomies and physics. Modern biomedical research is driven by discoveries at the molecular and cellular level, and by addressing these problems we will address the gap between many existing and emerging systems for cellular simulation and their manifestation at the level of the whole organ. Furthermore, from the study of electrical volume conductor problems, we will expand the biophysical scope of our systems to include dynamic cellular behavior, communication among cells in a syncytium, and tissue response to external influences such as electric current, MRI, and mechanical strain.
We are also working to increase the technologies available to biomedical researchers, both by leveraging our visualization expertise within the SCI Institute and carrying out new research in visualization directed at biomedically important areas such as time-dependent image data, bioelectric vector fields and other ion-transport behaviors, diffusion weighted MRI imaging, and data error/uncertainty. The Center will explore and evaluate these and other visualization techniques and combine these capabilities into customized and effective visualization tools and easy-to-use applications to be made available to the biomedical community.

To compliment the center, we have launched a dedicated web site where you can learn more about our research, download software and datasets, and access all kinds of other related material. We have also included a CIBC Wiki to facilitate collaboration and serve as a knowledgebase. Please check out the CIBC website to learn more about the groundbreaking research and development at our new NCRR/CIBC Center.