SCI Publications
2010
K. Gorczowski, M. Styner, J.Y. Jeong, J.S. Marron, J. Piven, H.C. Hazlett, S.M. Pizer, G. Gerig.
Multi-object analysis of volume, pose, and shape using statistical discrimination, In IEEE Trans Pattern Anal Mach Intell., Vol. 32, No. 4, pp. 652--661. April, 2010.
DOI: 10.1109/TPAMI.2009.92
PubMed ID: 20224121
M. Grabherr, P. Russell, M.D. Meyer, E. Mauceli, J. Alföldi, F. Di Palma, K. Lindblad-Toh.
Genome-wide synteny through highly sensitive sequence alignment: Satsuma, In Bioinformatics, Vol. 26, No. 9, pp. 1145--1151. 2010.
Motivation: Comparative genomics heavily relies on alignments of large and often complex DNA sequences. From an engineering perspective, the problem here is to provide maximum sensitivity (to find all there is to find), specificity (to only find real homology) and speed (to accommodate the billions of base pairs of vertebrate genomes).
Results: Satsuma addresses all three issues through novel strategies: (i) cross-correlation, implemented via fast Fourier transform; (ii) a match scoring scheme that eliminates almost all false hits; and (iii) an asynchronous 'battleship'-like search that allows for aligning two entire fish genomes (470 and 217 Mb) in 120 CPU hours using 15 processors on a single machine.
Availability: Satsuma is part of the Spines software package, implemented in C++ on Linux. The latest version of Spines can be freely downloaded under the LGPL license from http://www.broadinstitute.org/science/programs/genome-biology/spines/ Contact: grabherr@broadinstitute.org
X. Guo, J. Li, D. Xiu, A. Alexeenko.
Uncertainty Quantification Models for Microscale Squeeze-Film Damping, In International Journal for Numerical Methods in Engineering, Vol. 84, No. 10, pp. 1257--1272. 2010.
DOI: 10.1002/nme.2952
Keywords: uncertainty quantification, squeeze-film damping, gPC expansion, rarefied flow
L. Ha, M.W. Prastawa, G. Gerig, J.H. Gilmore, C.T. Silva, S. Joshi.
Image Registration Driven by Combined Probabilistic and Geometric Descriptors, In Med Image Comput Comput Assist Interv., Vol. 13, No. 2, pp. 602--609. 2010.
PubMed ID: 20879365
L.K. Ha, J. Krüger, S. Joshi, C.T. Silva.
Multi-scale Unbiased Diffeomorphic Atlas Construction on Multi-GPUs, In GPU Computing Gems, Vol. 1, 2010.
In this chapter, we present a high performance multi-scale 3D image processing framework to exploit the parallel processing power of multiple graphic processing units (Multi-GPUs) for medical image analysis. We developed GPU algorithms and data structures that can be applied to a wide range of 3D image processing applications and efficiently exploit the computational power and massive bandwidth offered by modern GPUs. Our framework helps scientists solve computationally intensive problems which previously required super computing power. To demonstrate the effectiveness of our framework and to compare to existing techniques, we focus our discussions on atlas construction - the application of understanding the development of the brain and the progression of brain diseases.
L.K. Ha, M.W. Prastawa, G. Gerig, J.H. Gilmore, C.T. Silva, S. Joshi.
Image Registration Driven by Combined Probabilistic and Geometric Descriptors, In Proceedings of Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, Lecture Notes in Computer Science (LNCS), Vol. 6362/2010, pp. 602--609. 2010.
DOI: 10.1007/978-3-642-15745-5_74
Deformable image registration in the presence of considerable contrast differences and large-scale size and shape changes represents a significant challenge for image registration. A representative driving application is the study of early brain development in neuroimaging, which requires co-registration of images of the same subject across time or building 4-D population atlases. Growth during the first few years of development involves significant changes in size and shape of anatomical structures but also rapid changes in tissue properties due to myelination and structuring that are reflected in the multi-modal Magnetic Resonance (MR) contrastmeasurements. We propose a new registration method that generates a mapping between brain anatomies represented as a multi-compartment model of tissue class posterior images and geometries.We transform intensity patterns into combined probabilistic and geometric descriptors that drive thematching in a diffeomorphic framework, where distances between geometries are represented using currents which does not require geometric correspondence. We show preliminary results on the registrations of neonatal brainMRIs to two-year old infantMRIs using class posteriors and surface boundaries of structures undergoing major changes. Quantitative validation demonstrates that our proposedmethod generates registrations that better preserve the consistency of anatomical structures over time.
Keywords: netl
H.B. Henninger, C.J. Underwood, G.A. Ateshian, J.A. Weiss.
Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament., In Journal of Biomechanics, Vol. 43, pp. 2567--2573. 2010.
Y. Hijazi, A. Knoll, M. Schott, A. Kensler, C.D. Hansen, H. Hagen.
CSG Operations of Arbitary Primitives with Interval Arithmetic and Real-Time Ray Casting, In DROPS - Dagstuhl Research Online Publication Server, In Scientific Visualization: Advanced Concepts, Edited by Hans Hagen, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 78-89. 2010.
B.M. Isaacson, J.G. Stinstra, R.S. MacLeod, P.F. Pasquina, R.D. Bloebaum.
Developing a Quantitative Measurement System for Assessing Heterotopic Ossification and Monitoring the Bioelectric Metrics from Electrically Induced Osseointegration in the Residual Limb of Service Members, In Annals of Biomedical Engineering, Vol. 38, No. 9, pp. 2968-–2978. 2010.
PubMed ID: 20458630
S.K. Iyer, E. DiBella, T. Tasdizen.
Edge enhanced spatio-temporal constrained reconstruction of undersampled dynamic contrast enhanced radial MRI, In IEEE International Symposium on Biomedical Imaging (ISBI): From Nano to Macro, pp. 704--707. 2010.
DOI: 10.1109/ISBI.2010.5490077
S. Jadhav, H. Bhatia, P.-T. Bremer, J.A. Levine, L.G. Nonato, V. Pascucci.
Consistent Approximation of Local Flow Behavior for 2D Vector Fields using Edge Maps, SCI Technical Report, No. UUSCI-2010-004, SCI Institute, University of Utah, 2010.
J. Jakeman, M. Eldred, D. Xiu.
Numerical Approach for Quantification of Epistemic Uncertainty, In Journal of Computational Physics, Vol. 229, No. 12, pp. 4648--4663. 2010.
DOI: 10.1016/j.jcp.2010.03.003
In the field of uncertainty quantification, uncertainty in the governing equations may assume two forms: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty can be characterised by known probability distributions whilst epistemic uncertainty arises from a lack of knowledge of probabilistic information. While extensive research efforts have been devoted to the numerical treatment of aleatory uncertainty, little attention has been given to the quantification of epistemic uncertainty. In this paper, we propose a numerical framework for quantification of epistemic uncertainty. The proposed methodology does not require any probabilistic information on uncertain input parameters. The method only necessitates an estimate of the range of the uncertain variables that encapsulates the true range of the input variables with overwhelming probability. To quantify the epistemic uncertainty, we solve an encapsulation problem, which is a solution to the original governing equations defined on the estimated range of the input variables. We discuss solution strategies for solving the encapsulation problem and the sufficient conditions under which the numerical solution can serve as a good estimator for capturing the effects of the epistemic uncertainty. In the case where probability distributions of the epistemic variables become known a posteriori, we can use the information to post-process the solution and evaluate solution statistics. Convergence results are also established for such cases, along with strategies for dealing with mixed aleatory and epistemic uncertainty. Several numerical examples are presented to demonstrate the procedure and properties of the proposed methodology.
Keywords: Uncertainty quantification, Epistemic uncertainty, Generalized polynomial chaos, Stochastic collocation, Encapsulation problem
F. Jiao, J.M. Phillips, J.G. Stinstra, J. Kueger, R. Varma, E. Hsu, J. Korenberg, C.R. Johnson.
Metrics for Uncertainty Analysis and Visualization of Diffusion Tensor Images, In Proceedings of the 5th international conference on Medical imaging and augmented reality (MIAR), Beijing, China, Springer-Verlag, Berlin, Heidelberg pp. 179--190. September, 2010.
P.K. Jimack, R.M. Kirby.
Towards the Development on an h-p-Refinement Strategy Based Upon Error Estimate Sensitivity, In Computers and Fluids, Vol. 46, No. 1, pp. 277--281. 2010.
DOI: 10.1016/j.compfluid.2010.08.003
The use of (a posteriori) error estimates is a fundamental tool in the application of adaptive numerical methods across a range of fluid flow problems. Such estimates are incomplete however, in that they do not necessarily indicate where to refine in order to achieve the most impact on the error, nor what type of refinement (for example h-refinement or p-refinement) will be best. This paper extends preliminary work of the authors (Comm Comp Phys, 2010;7:631–8), which uses adjoint-based sensitivity estimates in order to address these questions, to include application with p-refinement to arbitrary order and the use of practical a posteriori estimates. Results are presented which demonstrate that the proposed approach can guide both the h-refinement and the p-refinement processes, to yield improvements in the adaptive strategy compared to the use of more orthodox criteria.
M. Jolley, J. Stinstra, J. Tate, S. Pieper, R.S. Macleod, L. Chu, P. Wang, J.K. Triedman.
Finite element modeling of subcutaneous implantable defibrillator electrodes in an adult torso, In Heart Rhythm, Vol. 7, No. 5, pp. 692--698. May, 2010.
DOI: 10.1016/j.hrthm.2010.01.030
PubMed ID: 20230927
PubMed Central ID: PMC3103844
BACKGROUND:
Total subcutaneous implantable subcutaneous defibrillators are in development, but optimal electrode configurations are not known.
We used image-based finite element models (FEM) to predict the myocardial electric field generated during defibrillation shocks (pseudo-DFT) in a wide variety of reported and innovative subcutaneous electrode positions to determine factors affecting optimal lead positions for subcutaneous implantable cardioverter-defibrillators (S-ICD).
METHODS:
An image-based FEM of an adult man was used to predict pseudo-DFTs across a wide range of technically feasible S-ICD electrode placements. Generator location, lead location, length, geometry and orientation, and spatial relation of electrodes to ventricular mass were systematically varied. Best electrode configurations were determined, and spatial factors contributing to low pseudo-DFTs were identified using regression and general linear models.
RESULTS:
A total of 122 single-electrode/array configurations and 28 dual-electrode configurations were simulated. Pseudo-DFTs for single-electrode orientations ranged from 0.60 to 16.0 (mean 2.65 +/- 2.48) times that predicted for the base case, an anterior-posterior configuration recently tested clinically. A total of 32 of 150 tested configurations (21%) had pseudo-DFT ratios /=1, indicating the possibility of multiple novel, efficient, and clinically relevant orientations. Favorable alignment of lead-generator vector with ventricular myocardium and increased lead length were the most important factors correlated with pseudo-DFT, accounting for 70% of the predicted variation (R(2) = 0.70, each factor P < .05) in a combined general linear modl in which parameter estimates were calculated for each factor.
CONCLUSION:
Further exploration of novel and efficient electrode configurations may be of value in the development of the S-ICD technologies and implant procedure. FEM modeling suggests that the choice of configurations that maximize shock vector alignment with the center of myocardial mass and use of longer leads is more likely to result in lower DFT.
E. Jurrus, A.R.C. Paiva, S. Watanabe, J.R. Anderson, B.W. Jones, R.T. Whitaker, E.M. Jorgensen, R.E. Marc, T. Tasdizen.
Detection of Neuron Membranes in Electron Microscopy Images Using a Serial Neural Network Architecture, In Medical Image Analysis, Vol. 14, No. 6, pp. 770--783. 2010.
DOI: 10.1016/j.media.2010.06.002
PubMed ID: 20598935
J. Krüger.
A New Sampling Scheme for Slice Based Volume RenderingA new sampling scheme for slice based volume rendering, In Proceedings of IEEE/EG International Symposium on Volume Graphics (2010), pp. 1--4. 2010.
DOI: 10.2312/VG/VG10/001-004
In this paper we present a novel approach to generate proxy geometry for slice based volume rendering. The basic idea is derived from the behavior of a ray-caster and is a simple extension of the well known 2D object-aligned texture stack based technique. From this our novel scheme inherits the advantage that it enables hardware-based volume rendering for devices that do not support 3D textures. On these devices previous object-aligned 2D texture based approaches suffered from disturbing view angle dependent stack-switching artifacts which are avoided by our novel method. Our approach also shows benefits compared to the widely used view aligned slicing algorithm as it avoids jagged boundary artifacts and increases performance.
S. Kumar, V. Vishwanath, P. Carns, V. Pascucci, R. Latham, T. Peterka, M. Papka, R. Ross.
Towards Efficient Access of Multi-dimensional, Multi-resolution Scientific Data, In Proceedings of the 5th Petascale Data Storage Workshop, Supercomputing 2010, pp. (in press). 2010.
S.S. Kuppahally, N. Akoum, N.S. Burgon, T.J. Badger, E.G. Kholmovski, S. Vijayakumar, S.N. Rao, J. Blauer, E.N. Fish, E.V. Dibella, R.S. Macleod, C. McGann, S.E. Litwin, N.F. Marrouche.
Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI, In Circ Cardiovasc Imaging, Vol. 3, No. 3, pp. 231--239. 2010.
PubMed ID: 20133512
S.S. Kuppahally, N. Akoum, T.J. Badger, N.S. Burgon, T. Haslam, E. Kholmovski, R.S. Macleod, C. McGann, N.F. Marrouche.
Echocardiographic left atrial reverse remodeling after catheter ablation of atrial fibrillation is predicted by preablation delayed enhancement of left atrium by magnetic resonance imaging, In American Heart Journal, Vol. 160, No. 5, pp. 877--884. 2010.
DOI: 10.1016/j.ahj.2010.07.003
PubMed ID: 21095275
PubMed Central ID: PMC2995281
BACKGROUND:
Atrial fibrosis is a hallmark of atrial structural remodeling (SRM) and leads to structural and functional impairment of left atrial (LA) and persistence of atrial fibrillation (AF). This study was conducted to assess LA reverse remodeling after catheter ablation of AF in mild and moderate-severe LA SRM.
METHODS:
Catheter ablation was performed in 68 patients (age 62 ± 14 years, 68% males) with paroxysmal (n = 26) and persistent (n = 42) AF. The patients were divided into group 1 with mild LA SRM (10%, n = 37) by delayed enhancement magnetic resonance imaging (DEMRI). Two-dimensional echocardiography, LA strain, and strain rate during left ventricular systole by velocity vector imaging were performed pre and at 6 ± 3 months postablation. The long-term outcome was monitored for 12 months.
RESULTS:
Patients in group 1 were younger (57 ± 15 vs 66 ± 13 years, P = .009) with a male predominance (80% vs 57%, P < .05) as compared to group 2. Postablation, group 1 had significant increase in average LA strain (??: 14% vs 4%, P < .05) and strain rate (??: 0.5 vs 0.1 cm/s, P < .05) as compared to group 2. There was a trend toward more patients with persistent AF in group 2 (68% vs 55%, P = .2), but it was not statistically significant. Group 2 had more AF recurrences (41% vs 16%, P = .02) at 12 months after ablation.
CONCLUSION:
Mild preablation LA SRM by DEMRI predicts favorable LA structural and functional reverse remodeling and long-term success after catheter ablation of AF, irrespective of the paroxysmal or persistent nature of AF.
Page 65 of 142